some image

Publications

University of North Carolina at Chapel Hill

  • Response eQTLs, chromatin accessibility, and 3D chromatin structure in chondrocytes provide mechanistic insight into osteoarthritis risk

    Kramer N.E., Coryell P., D'Costa S., Thulson E., Byun S., Kim H., Parkus S.M., Bond M.L., Shine J., Chubinskaya S., Love M.I., Mohlke K.L., Diekman B.O., Loeser R.F., Phanstiel D.H.   Cell Genomics, 2025.

    preprint web

  • Gaussian processes for time series with lead-lag effects with applications to biology data

    Mu W, Chen J, Davis ES, Reed K, Phanstiel D, Love MI, Li D.   Biometrics , 2024.

    web

  • Response splicing QTLs in primary human chondrocytes identifies putative osteoarthritis risk genes

    Byun S, Coryell P, Kramer N, D'Costa S, Thulson E, Shine J, Parkus S, Chubinskaya S, Loeser RF, Diekman BO, Phanstiel DH.   Biometrics , 2024.

    web

  • Targeting the 3D genome by anthracyclines for chemotherapeutic effects

    Tan M, Sun S, Liu Y, Perreault AA, Phanstiel DH, Dou L, Pang B.   bioRxiv , 2024.

    preprint

  • Deciphering the functional impact of Alzheimer's Disease-associated variants in resting and proinflammatory immune cells

    Bond ML, Quiroga-Barber IY, D'Costa S, Wu Y, Bell JL, McAfee JC, Kramer NE, Lee S, Patrucco M, Phanstiel DH, Won H.   medRxiv, 2024.

    preprint

  • CRISPR Screening of Transcribed Super-Enhancers Identifies Drivers of Triple-Negative Breast Cancer Progression

    Lewis MW, King CM, Wisniewska K, Regner MJ, Coffey A, Kelly MR, Mendez-Giraldez R, Davis ES, Phanstiel DH, Franco HL.   Cancer Research , 2024.

    web

  • Mariner: explore the Hi-Cs.

    Davis ES, Parker SM, Kramer NE, Flores JP, Kiran M, Phanstiel DH.   Bioinformatics , 2024.

    web

  • TDP-43 pathology links innate and adaptive immunity in amyotrophic lateral sclerosis

    Evangelista BA, Ragusa JV, Pellegrino K, Wu Y, Quiroga-Barber IY, Cahalan SR, Arooji OK, Madren JA, Schroeter S, Cozzarin J, Xie L, Chen X, White KK, Ezzell JA, Iannone MA, Cohen S, Traub RE, Li X, Bedlack R, Phanstiel DH, Meeker R, Stanley N, Cohen TJ.   bioRxiv, 2024.

    preprint

  • Systematic investigation of allelic regulatory activity of schizophrenia-associated common variants

    McAfee JC, Lee S, Lee J, Bell JL, Krupa O, Davis J, Insigne K, Bond ML, Zhao N, Boyle AP, Phanstiel DH, Love MI, Stein JL, Ruzicka WB, Davila-Velderrain J, Kosuri S, Won H.   Cell Genomics, 2023.

    web

  • Chromatin loop dynamics during cellular differentiation are associated with changes to both anchor and internal regulatory features

    Bond M.L., Davis E.S., Quiroga I.Y., Kiran M, Love M.I., Won H, Phanstiel D.H.   Genome Research , 2023.

    preprint web

  • Proximity-dependent recruitment of Polycomb repressive complexes by the lncRNA Airn

    Braceros AK, Schertzer MD, Omer A, Trotman JB, Davis ES, Dowen JM, Phanstiel DH, Aiden EL, Calabrese JM.   Cell Reports, 2023.

    web

  • Chromatin alternates between A and B compartments at kilobase scale for subgenic organization

    Harris HL, Gu H, Olshansky M, Wang A, Farabella I, Eliaz Y, Kalluchi A, Krishna A, Jacobs M, Cauer G, Pham M, Rao SSP, Dudchenko O, Omer A, Mohajeri K, Kim S, Nichols MH, Davis ES, Gkountaroulis D, Udupa D, Aiden AP, Corces VG, Phanstiel DH, Noble WS, Nir G, Di Pierro M, Seo JS, Talkowski ME, Aiden EL, Rowley MJ.   Nature Communications, 2023.

    web

  • matchRanges: generating null hypothesis genomic ranges via covariate-matched sampling

    Davis ES, Mu W, Lee S, Dozmorov MG, Love MI, Phanstiel DH.    Bioinformatics , 2023.

    web

  • excluderanges: exclusion sets for T2T-CHM13, GRCm39, and other genome assemblies

    Ogata JD, Mu W, Davis ES, Xue B, Harrell JC, Sheffield NC, Phanstiel DH, Love MI, Dozmorov MG.   Bioinformatics , 2023.

    web

  • bootRanges: flexible generation of null sets of genomic ranges for hypothesis testing

    Mu W, Davis ES, Lee S, Dozmorov MG, Phanstiel DH, Love MI.   Bioinformatics , 2023.

    web

  • Guiding the design of well-powered Hi-C experiments to detect differential loops

    Parker S.M., Davis E.S., Phanstiel D.H.   Bioinformatics Advances , 2023.

    preprint web

  • CTCF: an R/bioconductor data package of human and mouse CTCF binding sites

    Dozmorov MG, Mu W, Davis ES, Lee S, Triche TJ Jr, Phanstiel DH, Love MI.   Bioinformatics Advances , 2022.

    web

  • Temporal analysis suggests a reciprocal relationship between 3D chromatin structure and transcription

    Reed K. S. M.*, Davis E. S.*, Bond M. L., Cabrera A., Thulson E., Quiroga I. Y., Cassel S., Woolery K. T., Hilton I., Won H., Love M. I., Phanstiel D. H.   Cell Reports , 2022.

    preprint web

  • 3D chromatin structure in chondrocytes identifies putative osteoarthritis risk genes

    Thulson E, Davis ES, D'Costa S, Coryell PR, Kramer NE, Mohlke KL, Loeser RF, Diekman BO, Phanstiel DH.   Genetics , 2022.

    web

  • A multi-omic dissection of super-enhancer driven oncogenic gene expression programs in ovarian cancer

    Kelly MR, Wisniewska K, Regner MJ, Lewis MW, Perreault AA, Davis ES, Phanstiel DH, Parker JS, Franco HL.   Nature Communications, 2022.

    web

  • Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture systems

    Quiroga I. Y., Cruikshank A. E., Bond M. L., Reed K. S. M., Evangelista B. A., Tseng J. H., Ragusa J. V., Meeker R. B., Won H., Cohen S., Cohen T. J., Phanstiel D. H.   Journal of Neuroinflammation , 2022.

    web

  • Oncogenic fusion proteins and their role in three-dimensional chromatin structure, phase separation, and cancer

    Quiroga I.Y., Ahn J.H., Wang G.G., Phanstiel D.H.   Current Opinion in Genetics & Development,  2022.

    web

  • Cell type-specific chromatin topology and gene regulation

    Phanstiel DH, Wang GG.   Trends in Genetics , 2022.

    web

  • Plotgardener: cultivating precise multi-panel figures in R

    Nicole E Kramer, Eric S Davis, Craig D Wenger, Erika M Deoudes, Sarah M Parker, Michael I Love, Douglas H Phanstiel   Bioinformatics , 2023.

    web

  • Phase separation drives aberrant chromatin looping and cancer development

    Ahn H.A., Davis E.S., Daugird S.Z., Zhao S., Quiroga I.Y., Uryu H., Li J., Storey A.J., Tsai Y., Keeley, D.P., Mackintosh S.G., Edmondson R.D., Byrum S.D., Cai L., Tackett A.J., Zheng D., Legant W.R., Phanstiel D.H., Wang G.G.   Nature , 2021.

    web

  • Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype

    Metz K.S., Ulici V., Kim C, Chubinskaya S, Loeser R.F., Phanstiel D.H.   Osteoarthritis and Cartilage , 2020.

    preprint web

  • Bedtoolsr: An R package for genomic data analysis and manipulation

    Patwardhan M.N., Wenger C., Davis E.S., Phanstiel D.H.   Journal of Open Source Software, 2019. 

    pdf web


  • Mapping Alzheimer's Disease Variants to Their Target Genes Using Computational Analysis of Chromatin Configuration

    Matoba N., Quiroga I.Y., Phanstiel D.H., Won H   The Journal of Visualized Experiments ,2020.

    web


  • CoralP: Flexible visualization of the human phosphatome

    Min A., Deoudes E.M., Bond M.L., Davis E.S., Phanstiel D.H.   Journal of Open Source Software,

    pdf preprint web


  • Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements

    Tycko J, Wainberg M, Marinov GK, Ursu O, Hess GT, Ego BK, Aradhana, Li A, Truong A, Trevino AE, Spees K, Yao D, Kaplow IM, Greenside PG, Morgens DW, Phanstiel DH, Snyder MP, Bintu L, Greenleaf WJ, Kundaje A, Bassik MC.   Nat. Commun. 2019.

    pdf preprint web


Color Schemes

Coral: Clear and Customizable Visualization of Human Kinome Data

Metz, K.S., Deoudes, E.M., Berginsky, M.E., Jimenez-Ruiz, I., Aksoy, B.A., Hammerbacher, J., Gomez, S.M., Phanstiel, D.H. Cell Systems, 2018.

Protein kinases represent one of the largest gene families in eukaryotes and play roles in a wide range of cell signaling processes and human diseases. Current tools for visualizing kinase data in the context of the human kinome superfamily are limited to encoding data through the addition of nodes to a low-resolution image of the kinome tree. We present Coral, a user-friendly interactive web application for visualizing both quantitative and qualitative data. Unlike previous tools, Coral can encode data in three features (node color, node size, and branch color), allows three modes of kinome visualization (the traditional kinome tree as well as radial and dynamic force networks), and generates high-resolution scalable vector graphics files suitable for publication without the need for refinement using graphics editing software. Due to its user-friendly, interactive, and highly customizable design, Coral is broadly applicable to high-throughput studies of the human kinome. The source code and web application are available at github.com/dphansti/CORAL and phanstiel-lab.med.unc.edu/Coral, respectively.

pdf preprint web

Stanford University

  • Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation.

    Van Bortle K, Phanstiel DH, Snyder MP.   Genome Biology, 2017.

    web


    Color Schemes

    Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development

    Phanstiel, D.H.*, Van Bortle, K.*, Spacek D.V., Hess G.T., Saad Shamim M., Machol I., Love M.I., Lieberman Aiden E., Bassik M.C., Snyder, M.P.   Molecular Cell, 2017.

    The three-dimensional arrangement of the human genome comprises a complex network of structural and regulatory chromatin loops important for coordinating changes in transcription during human development. To better understand the mechanisms underlying context-specific 3D chromatin structure and transcription during cellular differentiation, we generated comprehensive in situ Hi-C maps of DNA loops in human monocytes and differentiated macrophages. We demonstrate that dynamic looping events are regulatory rather than structural in nature and uncover widespread coordination of dynamic enhancer activity at preformed and acquired DNA loops. Enhancer-bound loop formation and enhancer-activation of preformed loops together form multi-loop activation hubs at key macrophage genes. Activation hubs connect 3.4 enhancers per promoter and exhibit a strong enrichment for Activator Protein 1 (AP-1) binding events, suggesting multi-loop activation hubs involving cell-type specific transcription factors may represent an important class of regulatory chromatin structures for the spatiotemporal control of transcription.

    pdf preprint web