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Increasing evidence suggests that interactions between regulatory genomic elements play an important role in regulating
gene expression. We generated a genome-wide interaction map of regulatory elements in human cells (ENCODE tier
1 cells, K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments
targeting six broadly distributed factors. Bound regions covered 80% of DNase I hypersensitive sites including 99.7% of
TSS and 98% of enhancers. Correlating this map with ChIP-seq and RNA-seq data sets revealed cohesin, CTCF, and
ZNF143 as key components of three-dimensional chromatin structure and revealed how the distal chromatin state affects
gene transcription. Comparison of interactions between cell types revealed that enhancer–promoter interactions were
highly cell-type-specific. Construction and comparison of distal and proximal regulatory networks revealed stark dif-
ferences in structure and biological function. Proximal binding events are enriched at genes with housekeeping functions,
while distal binding events interact with genes involved in dynamic biological processes including response to stimulus.
This study reveals new mechanistic and functional insights into regulatory region organization in the nucleus.

[Supplemental material is available for this article.]

Since the sequencing of the human genome in 2001, great progress

has been made in mapping the location of genes and other regu-

latory genomic elements. Systematic mapping of transcription

factor binding sites and open chromatin regions have uncovered

complex regulatory networks revealing mechanisms of gene reg-

ulation (The ENCODE Project Consortium 2012). However, in-

creasing evidence suggests that in addition to local interactions,

3D contacts between distal regulatory elements play an important

role in gene regulation (Gondor and Ohlsson 2009; Schoenfelder

et al. 2010). Such contacts have been implicated in diverse bi-

ological phenomena including development, cancer, and immune

response (Jhunjhunwala et al. 2008; Kenter et al. 2012; Rickman

et al. 2012; Apostolou et al. 2013; Liu and Cheung 2013; Phillips-

Cremins et al. 2013). However, due to the limited ability to study

three-dimensional (3D) chromatin structure with sufficient

breadth and resolution, our knowledge regarding the characteris-

tics and impact of chromatin structure remains limited.

Numerous genomic technologies have evolved to interrogate

3D interactions, each with its own benefits and disadvantages.

Virtually all of the experimental methods use cross-linking of

chromatin, cleavage of DNA, and proximity ligation of interacting

segments to create chimeric fragments of DNA. In the first iteration

of this method, chromatin conformation capture (3C), these chi-

meric fragments were detected via PCR and electrophoresis (Dekker

et al. 2002). In recent years significant advances in sequencing

technology have spawned a variety of high-throughput variations

(Dostie et al. 2006; Simonis et al. 2006; Zhao et al. 2006; Fullwood

et al. 2009; Lieberman-Aiden et al. 2009).One such technology, Hi-

C, allows genome-wide detection of interaction frequencies, typi-

cally at a resolution of 20–50 kb, and has been used to reveal

megabase scale topologically associated domains (TADs) that or-

ganize human andmouse genomes. (Dixon et al. 2012; Gibcus and

Dekker 2013). High-resolution detection of interacting fragments

< 10 kb via Hi-C requires extremely deep sequencing but has

recently been achieved and used to characterize chromatin in-

teractions in human fibroblast cells (Jin et al. 2013). More com-

monly, high-resolution detection of interactions is achieved by

targeting specific genomic regions with alternative techniques. For

example, 5C technology allows high-resolution detection of in-

teraction frequencies but is only currently feasible for small por-

tions (;1%) of the genome (Sanyal et al. 2012). Application of 5C

to selected regions of the mouse genome revealed substantial

changes in subTADarchitecture betweendifferent cell types (Phillips-

Cremins et al. 2013). However, the limited genomic coverage pre-

cludes the generation and characterization of genome-wide distal

regulatory networks. A third technique, Chromatin Interaction

Analysis by Paired-End Tag sequencing (ChIA-PET), uses a chro-

matin immunoprecipitation step that allows the detection of long-

range interactions at regions bound by a target protein of interest.

Enriching for loci bound by a specific protein drastically reduces

the sequencing depth required to accurately detect interactions and

enables detection of interactions between regions of < 5 kb. This

technique has been utilized to study interactions involving subsets

of functional genomic elements bound by estrogen receptor 1
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(ESR1), POLR2A, CTCF, SMC1A, and H3K4me2 (Fullwood et al.

2009; Handoko et al. 2011; Chepelev et al. 2012; Li et al. 2012;

DeMare et al. 2013; Zhang et al. 2013).

Despite these advances, many questions regarding the nature

of 3D chromatin interactions remain elusive: What factors and

combinations of factors are involved in establishing and main-

taining long-distance interactions?Howdo the chromatin states of

distal interacting loci effect gene expression? How are these in-

teractions used to regulate different biological functions? An-

swering these questions requires both a comprehensive map of

interactions between regulatory elements and detailed maps of

transcription factor (TF) binding, histone modification, and gene

expression in the investigated cells.

To address these questions, we conducted ChIA-PET experi-

ments targeting six chromosomal proteins/modifications broadly

associated with transcriptional regulation in a well-characterized

myelogenous leukemia human cell line (K562). The interrogated

regions cover the vast majority of open chromatin regions and

provide a genome-wide map of long-range interactions between

regulatory elements. Through extensive integration with hundreds

of available genomic data sets, we characterized the proteins in-

volved in 3D chromosomal organization, the functional impact of

interactions, and the general characteristics of distal regulatory net-

works. To address the function and specificity of these interactions,

we also conductedChIA-PETexperiments targeting RAD21 in awell-

characterized human lymphoblastoid cell line (LCL) and compared

it with RAD21 anchored interactions in K562 cells.

Results

Genome-wide map of regulatory interactions

In order to detect regulatory interactions on a global scale, we

conducted ChIA-PET in K562 cells using antibodies targeting six

broadly distributed DNA binding proteins and histone marks

(hereinafter referred to simply as ‘‘factors’’). The factors include

marks of enhancers, promoters, and active regulatory elements

(H3K4me1, H3K4me2, H3K4me3, H3K27ac) as well as POLR2A

and a component of the cohesin complex (RAD21). At least two

biological replicate experiments were performed and interactions

were scored and filtered using a novel ChIA-PET processing

method (Supplemental Methods). This method determines both

binding sites and interaction frequencies between any two bound

loci. Due to a physical connection through the DNA molecule

itself, random interactions occur at a rate that correlates with ge-

nomic distance (Dekker et al. 2002). To account for the influence of

genomic distance on interaction frequency, we devised a resam-

pling method that generates a control rewired data set that retains

the same distribution of PET distances as the observed data set. For

each pair of binding peaks, we calculate aZ-score by comparing the

interaction frequency to the local mean and standard deviation of

interaction frequencies from the rewired data set. Z-scores are cal-

culated for both observed and rewired data sets, which allows in-

teractions to be filtered to a user-defined false discovery rate (FDR).

At an FDR of 10% we identified a total of 29,366 confident long-

range interactions from the six factors/proteins (Supplemental Table

S1). The median size of the interacting loci was 3603 bp, while the

median distance between two interacting loci was 120,367 bp

(Supplemental Fig. S1). Specific information for each data set and

each factor can be found in Supplemental Tables S2 and S3.

To better understand the nature of each interaction, we

compared our ChIA-PET results to the extensive list of elements

defined by the ENCODE Project Consortium (2012). We first de-

fined a set of ‘‘regulatory elements’’ in K562 cells by intersecting

chromatin state calls as determined by Hoffman et al. (2013) and

DNase I hypersensitive sites (DHSs) as defined by Thurman et al.

(2012). Each DHSwas assigned to a single chromatin state based in

the chromatin state it overlapped, with the most resulting in

169,871 annotated regulatory elements and 32,395 undefined el-

ements that did not overlap any chromatin state calls (Table 1; see

Supplemental Methods for details). The binding peaks detected

from our six ChIA-PET data sets covered the majority of DNase I

hypersensitive sites (80%) and annotated regulatory elements,

(82.7%) including 99.7% of TSS and 98.0% of enhancers (Fig. 1A;

Table 1). A total of 44% of CTCF regions, 36% of promoter regions,

and 21% of enhancers were involved in at least a single interaction

(Table 1; Supplemental Table S4).

ChIA-PET interactions are highly consistent with interactions

determined by both Hi-C and 5C (Fig. 1). Genome-wide inter-

actions maps generated by Hi-C suggested that genomes are or-

ganized inmegabase scale topologically associated domains (TADs)

characterized by high intradomain interaction frequencies.

Consistent with these findings, the vast majority of our ChIA-PET

interactions (97%) connected two regions within the same to-

pological domain (Fig. 1B,C).

High-resolution interactionmaps have been generated for K562

using 5C technology, albeit for only a small fraction of the genome

(;1%). Within these regions 62.5% of ChIA-PET interactions were

also identified by 5C. This overlap is significantly higher than

expected (19.2%) based on permutation testing (P < 0.001) (Fig. 1D).

Comparison to previous ChIA-PET data sets targeting POLR2A in

K562 cells reveals that a greater fraction of our interactions agreewith

5C results (Supplemental Fig. S1A; Li et al. 2012). This improvement

in accuracy of interaction calling can be attributed to increases in

sequencing depth as well as the distance-dependent scoring method

and stringent empirical FDR filtering we used.

Comparison of the types of interactions that comprised each

data set revealed the similarities and differences between each TF

(Fig. 1F). For example, 41% of RAD21-bound interactions linked

two CTCF elements and only 7% connected enhancers to pro-

moters. In contrast, 47% of H3K4me3-bound interactions con-

nected enhancers to promoters but only 28% connected twoCTCF

elements. Despite these differences the majority of interactions

were detected inmore than one data set. A total of 19,007 (65%) of

interactions were found in more than one data set while 10,359

(35%)were factor-specific. The total numbers of general and factor-

specific interactions for each data set are detailed in Supplemental

Table S3 and displayed in Supplemental Figure S1D.

Given the agreement between previous interaction studies

and the comprehensiveness of the coverage we conclude that our

Table 1. Profile of interactions

Regulatory element Total

Percentage
covered
by peak

Percentage
covered
by anchor

TSS 29,389 99.7 35.5
Enhancer 35,176 98 21
Weak enhancer 1,079 86.2 11.9
CTCF element 22,072 84.7 43.9
Promoter flanking element 12,082 79.3 9.7
Transcribed element 42,999 64 8.7
Repressed element 27,074 28.9 3.7
Total 169,871 82.7 24

1906 Genome Research
www.genome.org

Heidari et al.

 Cold Spring Harbor Laboratory Press on July 31, 2015 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


data set represents a genome-wide map of long-range interactions

between regulatory elements in K562 cells.

Cohesin, CTCF, ZNF143, and HOT regions are enriched
at interacting loci

To determine which TFs participate in long-range interactions, we

intersected our data with binding regions of 102 TFs determined

via ChIP-seq by the ENCODE Project Consortium (2012). Four

factors were strongly enriched at interacting loci; RAD21, SMC3,

CTCF, and ZNF143 (Fig. 2A; Supplemental Fig. S2A). RAD21 and

SMC3 are members of the cohesin complex, a complex tradition-

ally known for tethering together sister chromatids duringmitosis.

However, cohesin complex is bound to DNA throughout most

of the cell cycle and has been recently implicated in long-range

Figure 1. Comparison of ChIA-PET to Hi-C and 5C. (A) Venn diagram depicting overlap between binding peaks detected fromChIA-PET data sets (all six
factors combined) and DNase I hypersensitive sites. A total of 80% of DNase I peaks are bound by at least one ChIA-PET peak. (B) Comparison of
interactions found by ChIA-PET and Hi-C data sets. Hi-C interaction frequencies for human embryonic stem cells are shown in the top panel. TADs
determined by Hi-C are represented by alternating light and dark gray boxes. ChIA-PET interactions are represented by arches. The height of each arch is
proportional to the Z-score of each interaction and the color indicates in which data set it was detected. ChIA-PET binding peaks are shown at the bottom.
(C ) Pie chart depicting the number of ChIA-PET interactions that are completely within one TAD (blue), within one TAD and overlap a TAD border (gray),
and between two TADs (red.) TAD borders were defined by extending borders 20 kb in both directions. (D) Percentage of ChIA-PET interactions also found
by 5C. Only ChIA-PET interactions that were tested by 5C were considered. Gray bars represent expected percentages generated by randomly selecting
interactions from the tested 5C region while retaining the same distribution of interaction distances. (*) P-value < 0.05 (permutation testing, 1000
permutations). (E) ChIA-PET interactions (top) and 5C interactions (bottom) at the globin locus on chromosome 11. Heights of arches represent Z-scores of
interactions. ChIA-PET interactions are colored according to data sets. 5C interactions are colored according to whether or not they overlap a ChIA-PET
interaction (black: yes, gray: no). Binding peaks for each data set are represented by colored circles. (F ) Heatmaps depicting the percentage of interactions
from each data set that connect different types of genomic loci.

Genome-wide map of regulatory interactions
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interactions (Kagey et al. 2010;Hoffman et al. 2013;Merkenschlager

and Odom 2013; Phillips-Cremins et al. 2013). CTCF, a canonical

insulator protein, which is found at themajority (96.7%) of RAD21

sites in K562 cells, has also recently been implicated in long-range

interactions (Handoko et al. 2011). ZNF143 is a zinc finger protein

known as a transcriptional activator, which often colocalizes with

CTCF and cohesin (Xie et al. 2013). ZNF143 has been shown to

regulate both coding and noncoding genes by binding an 18-bp

motif located on the core promoter region, but to date has not been

implicated in the regulation of 3D chromatin structure (Schaub

et al. 1997; Ngondo-Mbongo et al. 2013). These four factors were

enriched both when the experimental data were pooled (Fig. 2A)

and when each factor was analyzed separately (Supplemental Fig.

S2A).

We next determined whether the strength of an interaction

correlated with the presence or absence of RAD21. Indeed, for all

data sets interactions with RAD21 bound at both ends had sig-

nificantly higher Z-scores relative to interactions where RAD21

was not bound at either end or bound at only one end (P < 0.05,

Wilcoxon signed rank test) (Fig. 2B; Supplemental Fig. S2B). Fi-

nally, we compared the number of proximal targets (TF binds at

gene promoter) and distal targets (TF binds at distal loci that in-

teracts with gene promoter) of each TF. While most TFs regulate

target genes via both proximal and distal binding, RAD21, SMC3,

CTCF, and ZNF143 had the highest ratios of distal vs. proximal

targets (Fig. 2C). Taken together these results implicate cohesin,

CTCF, and ZNF143 as the central regulators of long-range in-

teractions. These findings also suggest that these factors act at both

ends of an interaction.

We next determined whether certain combinations of factors

were enriched at interacting genomic loci (Fig. 2D–G). For each TF

we built a self-organizing map (SOM) which clusters genomic loci

into neurons based on the combinations of factors that are bound

(Fig. 2D). Multiple neurons were enriched for interactions in-

dicating that certain TF coassociations do correlate with long-

range interactions. To elucidate which combinations of TFs were

enriched, we constructed a heatmap displaying the combinations

of TFs in each neuron (Supplemental Fig. 2G). Note, only neurons

that were significantly enriched (P # 0.01, Fisher’s exact test with

Bonferroni correction) for interactions are shown. RAD21 and

CTCF and SMC3 were present at very high percentages in virtually

all of the neurons that were enriched for interactions. ZNF143were

in most but not all such neurons. These results underscore the

central role of these four factors in establishment or maintenance

of (3D) chromatin structure. Several other small clusters are evi-

dent including neurons with high percentages of enhancer-related

TFs such as EP300 andTEAD4. Another cluster of neurons enriched

in interactions is characterized by the presence of AP-1 family (FOS

and JUN) proteinswhich are known as early response transcription

factors and are involved in cell proliferation, differentiation, and

survival as well as other important cellular events (Ameyar et al.

2003).

Many of the neurons in this plot were characterized by

cobinding of many TFs (Fig. 2E,F). These neurons tended to con-

tain TSS regions and may represent high-occupancy target (HOT)

regions, genomic loci bound by multiple TFs that often mark

the promoters of highly expressed genes (Moorman et al. 2006;

Gerstein et al. 2010; Negre et al. 2011; Yip et al. 2012). We found

that HOT regions, as determined by Boyle and colleagues were

significantly enriched in long-range interactions (P = 5.9 3 10�62,

Fisher’s exact test) and that HOT regions had a strong preference

to interact with other HOTregions (P = 4.53 10�271, Fisher’s exact

test) (Boyle et al. 2014). Taken together these findings support

the model that DNA looping brings active promoters into distinct

nuclear subcompartments termed ‘‘transcription factories.’’

Functional impact of interactions between promoters and distal
regulatory elements

Physical interaction of gene promoters with distal regulatory ele-

ments represents an important mechanism of gene regulation.

Understanding these interactions requires both mapping the in-

teractions between promoters and distal regulatory elements and

assessing their functional significance. Our genome-wide map of

regulatory interactions intersected with a broad range of other data

sets acquired on K562 cells and other well-characterized cell lines

allows us to achieve a detailed understanding of the functional

impact of long-range interactions at a level not previously achieved.

We first investigated the effect that chromatin state of a distal

interacting region had on gene expression (Fig. 3A). We observed

a clear trend in which interactions with transcription start sites

(TSS), transcribed regions (T), or enhancers (E) resulted in high

gene expression, interactions with weak enhancers (WE) or CTCF

regions resulted in moderate gene expression, and interactions

with repressed (R) regions resulted in low gene expression. These

results have several important implications. First, these results

clearly indicate that (3D) chromatin structure does significantly

correlate with transcriptional activity and is therefore an impor-

tant characteristic to consider when building regulatory networks

and models of regulation. Second, these findings suggest that all

types of distal chromatin states have an impact on gene expression

and that the type of distal chromatin state is a predictor of the

functional impact.

Previous studies have shown that enhancers are highly cell-

type-specific compared to other types of regulatory elements

(Heintzman et al. 2009). Since our datamaps all types of regulatory

elements to their targets we sought to determine whether in-

teractions with any types of regulatory elements correlated with

cell-type-specific expression of the genes with which they inter-

acted. Genes that were expressed specifically in K562 cells com-

pared to 11 other studied cell lines (see Methods) were enriched

more than twofold for K562 enhancer–promoter interactions (P <

0.05, Fisher’s exact test) (Fig. 3B). Interestingly, no other types of

interaction exhibited this enrichment. Although not statistically

significant, promoter–promoter interactions were enriched in

broadly (i.e., constitutively) expressed genes.

Given the functional importance of enhancers in regulating

transcription and establishing cell-type-specific gene expression

patterns we next determined which Gene Ontology (GO) terms

were enriched in genes whose promoters interacted with en-

hancers. Interestingly, genes corresponding to ‘‘transcription fac-

tor activity’’ were highly enriched (1.7-fold, P = 0.00079, Fisher’s

exact test with Benjamini-Hochberg correction). This suggests an

expanded role for enhancer–promoter interactions in regulatory

networks as they may regulate not only these TFs but also the

downstream targets of these TFs. We investigate the role of distal

interactions in regulatory networks in greater detail later in this

work (vide infra).Many of the TFswhose promoters are involved in

interactions with enhancers regulate blood and immune-related

functions including hematopoietically expressed homeobox pro-

tein (HHEX), nuclear factor of kappa light polypeptide gene en-

hancer in B-cells inhibitor, alpha (NFKBIA), and interferon,

gamma-inducible protein 16 (IFI16) (Trapani et al. 1992; Grilli

et al. 1993; Liao et al. 2000).
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Cell-type-specific interactions are enriched for enhancer-promoter
interactions and correlate with differences in gene expression
In order to determine how interactions differed between cell

types, we conducted ChIA-PET experiments targeting RAD21 in

the well-characterized human LCL GM12878. We then determined

differential interactions between the two cell lines while controlling

for differences in RAD21 binding (see Supplemental Information).

At an FDR of 0.05 we found 1133 differential interactions, 685 and

Figure 2. Factors enriched at interacting loci. (A) TF enrichment at interacting loci. The x-axis represents the log2 ratio of observed divided by expected
TF binding peaks that overlap interacting loci. The y-axis represents the number of interacting loci at which that factor is bound. Colors of circles represent
the level of enrichment (see SupplementalMethods). (B) Box andwhisker plot of Z-scores of interactions that overlap a RAD21 peak at both, one, or neither
end of an interaction. (*) Significant differences (P < 0.05, Wilcoxon signed-rank test). (C ) Scatter plot comparing the number of direct and indirect targets
of each TF. Colors correspond to how enriched that factor was at interacting loci. (D) Depiction of how SOM maps were generated using POLR2A as an
example. (Left) Binding profile of POLR2A in K562 cells as well as POLR2A peaks (light blue circles) and peaks of other TFs that overlap POLR2A peaks (dark
blue). (Middle) Toroidal depiction of SOM generated from POLR2A data set. Each hexagon represents a neuron comprised of POLR2A binding peaks that
share patterns of TF cobinding. (Right) Planar view of POLR2A SOMmap. Neurons are colored to depict the percentage of POLR2A peaks in each neuron
that are involved in an interaction. (E) Barplot showing number of observed and expected HOT regions involved in interactions. P-values were determined
by Fisher’s exact test. (F) Barplot showing number of observed and expected number of interactions linking twoHOT regions. Significancewas determined
by permutation testing. (G) Heatmap representing neurons that are significantly enriched for interactions (P < 0.01, Fisher’s exact test with Benjamini-
Hochberg correction, fold-enrichment > 2). For visualization purposes, only selected TFs are shown. The data sets in which a neuron was detected are
shown on the far left as well as the percentage of peaks in each neuron that overlapped different types of annotated DHSs.
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448 interactions specific to either GM12878 or K562, respectively

(Fig. 3D). Genes whose promoters overlapped the ends of a cell line-

specific interaction were expressed at significantly higher levels in

that cell type (Fig. 3E) (P < 0.01, Wilcoxon signed rank test), in-

dicating that these interactions likely play a regulatory role and are

specific to certain cell types.Wenext compared the percentage of TSS

that interactedwith each type of distal regulatory element. As shown

in Figure 3F, TSS-enhancer interactions were highly enriched in the

cell line-specific interactions (P < 0.01, Fisher’s exact test). While

enhancers have been known to be themost variable regulatory type,

this is the first time a global genomic analysis has demonstrated that

enhancer–promoter interactions are more variable than any other

type of promoter centered interaction.

Loop regions correspond to functional chromatin domains

Another mechanism of transcriptional regulationmay involve the

compartmentalization of DNA into large domains of active or

inactive chromatin (i.e., TADs and subTADs). It has been pre-

viously shown that boundaries of megabase scale topological do-

mains demarcate transitions fromactive to inactive chromatin and

that CTCF is enriched at these boundaries (Dixon et al. 2012). In

addition, CTCF-bound interactions marked borders of active and

inactive chromatin inmouse embryonic stem cells (Handoko et al.

2011). We reasoned that long-range interactions might form loops

affecting gene expression not only of the genes at the anchor re-

gions but also within the loop region itself. To investigate this, we

clustered interactions by histonemark occupancy bothwithin and

adjacent to each loop, as described by Handoko et al. (2011) (Fig.

4A). Five distinct groups emerged.

Group 1 is characterized by short interactions, activemarks in

the anchor regions, and enrichment for TSS–TSS and E–TSS in-

teraction types (Fig. 4A–E). This group likely represents regulatory

looping events that bring together promoters and distal regulatory

elements. Indeed, anchor regions of group 1 are enriched for

a number of GO terms (e.g., cell cycle and metabolic process). In

Figure 3. Promoter interactions. (A) Box andwhisker plot depicting gene expression (RPKM) as a function of distal chromatin regions. Comparisons that
exhibited significant differences (P < 0.05, Wilcoxon signed-rank test) are indicated by red lines, while those that were not significantly different (P$ 0.05,
Wilcoxon signed-rank test) are indicated by blue lines. (B) Barplot depicting the percentage of genes whose promotors are involved in an interaction with
each type of distal chromatin region. Values are shown for both genes that are K562-specific and genes that are broadly expressed. (*) Significant
difference (P < 0.05, Fisher’s exact test). (C ) GO terms enriched in sets of genes whose promoters interact with enhancers (P < 0.01, Fisher’s exact test with
Benjamini-Hochberg correction, fold-change > 1.2). (D) Differential interactions between GM12878 and K562 (FDR = 0.05). See Supplemental In-
formation. (E) Log2 expression changes between K562 and GM12878 for all genes, genes that overlap the ends of GM12878-specific interactions, and
genes that overlap the ends of K562-specific interactions. (*) Significant difference from all genes (P < 0.01, Wilcoxon signed-rank test). (F ) Percentage of
TSS that interact with at least one of each distal regulatory region. (*) Significant difference from all genes (P < 0.01, Fisher’s exact test).
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contrast, groups 2, 3, and 4 showed no enrichment for histone

marks or GO terms at the anchor regions (Fig. 4A,D). Instead, they

were characterized by relatively long interaction distances, GO

enrichment inside the loop region, and coordinated gene expres-

sion (Fig. 4B–D). Loops in groups 2 and 3 harbored active histone

marks, exhibited high gene expression, and were enriched in GO

terms including ‘‘metabolic processes’’ and ‘‘chromatin organiza-

tion’’ (Fig. 4C,D). Genes within the loops of group 4, which har-

bored inactive regions, were enriched in a completely different set

of GO terms including ‘‘signaling,’’ ‘‘developmental process,’’ and

‘‘cell adhesion’’ (Fig. 4A,D). Group 5, which has no characteristic

histone pattern, is characterized by long interactions that show no

GO enrichment either at the anchors or within the loops.

These analyses allowed us to create models for each group of

interactions (Fig. 4F). Group 1 interactions bring together pro-

moters with other promoters or other regulatory elements to affect

transcription in the anchor regions. Group 2 interactions harbor

active regions of chromatin. Group 3 interactions reach from the

border of an active region into the middle of an active region.

These interactions may provide structural support for larger active

loops. Group 4 interactions reach from borders into inactive re-

gions of chromatin. The role of group 5 interactions is unclear.

In total, these findings suggest that long-range chromatin

interactions may function in at least two ways to regulate gene

expression: (1) by bringing together promoters and distal regu-

latory elements and (2) by creating large structural domains that

Figure 4. Chromatin domains revealed by clustering interactions. (A) Interactions were clustered into five categories based on the distribution of 11
histone marks. Normalized signals for 11 histone marks were determined in 30 equally sized bins (10 on either side of the interaction and 10 within the
loop of the interaction). Interactions were then clustered in eight groups using k-means clustering. Symmetrical groups were grouped to give rise to five
final groups. (B) Box and whisker plot depicting the size distribution of interactions in each of the five groups. (C ) Density plot showing gene expression
values of genes whose promoters reside in the loop regions of each group. (D) GO biological processes enriched in the anchor and loop regions of each of
the five groups (P < 10�5, Fisher’s exact test with Benjamini-Hochberg correction). (E) Barplot depicting the percentage of interactions in each of the five
groups that links certain types of annotated regulatory elements. (F) Schematic diagram of the loops in each of the first four groups.
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harbor functionally related genes that share gene expression

patterns.

Distinct architecture of proximal and distal regulatory
networks

Having established both the quality and functional relevance of

these long-range interactions we next constructed and character-

ized the K562 distal regulatory network using the wealth of bind-

ing data in these cells. Comparison of the distal regulatory network

to the proximal regulatory network revealed substantial differ-

ences in TF-target relationships, hierarchical structure, and net-

work motif usage. Integration of the regulatory information from

both networks into a single combined regulatory network provides

a comprehensive view of regulatory TF binding in K562 cells.

We first compared proximal and distal targets for each of the

TFs for which ENCODE TF binding data was available (Fig. 5A). A

total of 58% of the edges present in the distal network were not

found in the proximal network indicating that overall these net-

works are highly dissimilar. Four factors, however, showed notably

high redundancy between the proximal and distal networks:

RAD21, SMC3, CTCF, and ZNF143 (Fig. 5A). This finding is con-

sistent with the binding of these factors at both ends of an inter-

action and agrees with our earlier findings that cohesin’s presence

at both ends of an interaction correlates with higher interaction

frequency.

Next, TF networks were organized into three-tiered hierar-

chical networks as described by Gerstein and colleagues (Fig. 5B;

Supplemental Fig. S3). A simulated annealing procedure was used

to maximize downward-pointing edges (Gerstein et al. 2012). The

color of the nodes corresponds to the tier of the node in the

proximal network. Surprisingly, the tier assignments in the distal

network show virtually no correlation with the proximal network

(percent agreement: 36%). Other characteristics also distinguished

the two hierarchical networks. For example, the proximal network

has the fewest tier 1 TFs and the most tier 3 TFs, but that pattern is

exactly opposite in the distal network (Supplemental Fig. S3D,E).

In addition, the overall degree—the sum of all inward and outward

edges—of the nodes in the proximal network decreased from top to

bottom, but was increased in the distal regulatory network (Sup-

plemental Fig. S3B). These trends were almost exactly the same in

networks built for the GM12878 cell line, providing a further layer

of confirmation (Supplemental Fig. S3). The combined network

shows similar properties to the proximal network, which is

expected since the proximal network contains more than twice as

many edges. Nevertheless, the combined network likely provides

the most accurate depiction of the regulatory infrastructure as it

embodies both proximal and distal types of regulation.

TFs regulate different classes of proteins via proximal and distal
binding

Given the substantial differences in structure between the proxi-

mal and distal regulatory networks, we next asked whether there

were differences in the biological processes that were regulated by

each network. To do so we performed Gene Ontology enrichment

analysis for the direct and indirect targets of each TF. We then

calculated the log2 ratio of proximal vs. distal P-value and plotted

the ratio as a heatmap (Fig. 6A). Positive values indicate stronger

enrichment in proximal targets and negative values reflect stron-

ger enrichment in distal targets. Many GO terms were mediated

almost exclusively by proximal binding of TFs and tended to reflect

general housekeeping functions of the cell including ‘‘cellular met-

abolic process,’’ ‘‘cell cycle,’’ and ‘‘mRNA processing.’’ In contrast,

GO terms enriched via distal TF binding included more dynamic

and cell-type-specific processes including ‘‘signal transduction,’’

‘‘immune system process,’’ and ‘‘response to stimulus.’’ Other pro-

cesses, such as ‘‘transcription factor binding,’’ were regulated both

by proximal and distal binding events (Fig. 6A; Supplemental Fig.

S4A). We performed the same analysis with networks built from

GM12878 ChIP-seq and ChIA-PET data with similar results (Sup-

plemental Fig. S5A). Most GO terms were regulated predominately

by direct binding, though some GO terms were regulated by distal

binding of certain TFs. In agreement with the K562 network,

‘‘metabolic process’’ was regulated almost exclusively by proximal

binding and ‘‘transcription factor binding’’ was regulated by both

distal and proximal binding events (Supplemental Fig. S5B). In

contrast to the K562 network, ‘‘cellular response to stimulus’’ was

regulated by both distal and proximal binding events (Supple-

mental Fig. S5B).

We next examined whether any TFs regulated different types

of biological process via proximal and distal interactions (Supple-

mental Fig. S4B). While some TFs, including TAF7 and EZH2, only

exhibited proximal enrichment for GO terms, others showed both

proximal and distal enrichment. Interestingly, for many such TFs

the processes regulated via proximal binding were completely

different from those regulated via distal binding. For example,

GATA2 regulates ‘‘biosynthetic process’’ and ‘‘cell cycle’’ via prox-

imal binding but ‘‘cell differentiation’’ and ‘‘developmental pro-

cess’’ via distal binding. Thus, at least some TFs likely mediate

different biological processes via proximal vs. distal binding. CTCF

and RAD21 tend to regulate the same biological processes via direct

and indirect binding, which again highlights their occupancy at

both ends of most detected interactions.

Discussion
Combining multiple ChIA-PET data sets, we generated a genome-

wide map of interactions between regulatory elements in human

cells. Distance-dependent interaction scoring and filtering accu-

rately identified long-range interactions, as confirmed by in-

tersection with previous Hi-C and 5C studies. Analysis of these

data sets provided novel insights into 3D chromatin structure,

transcriptional regulation, and network wiring, and gives rise to

a number of new models of gene regulation.

One of the most striking trends observed in this study regards

the strong enrichment of CTCF, cohesin, and ZNF143 at interact-

ing loci. These results agree with a study by Phillips-Cremins et al.

(2013) who investigated interactions in select regions of themouse

genome and found that > 80% of interactions were anchored by

some combination of CTCF, MED12, or SMC1, a subunit of

cohesin. Our analysis further revealed that CTCF and RAD21 were

members of nearly every cobinding pattern that was enriched for

interactions. This differs from that observed in mouse by Phillips-

Cremins et al. (2013), who found distinct sets of interactions oc-

cupied byCTCFwithout cohesin and cohesinwithoutCTCF. These

differences between the two studies may represent an important

difference in chromatin structure between species or between

different cell types or different sensitivities in the experimental

methods. The role of ZNF143 as a transcriptional activator with

binding at promoters of coding and noncoding genes is known.

Recently, investigators introduced this factor as important in the

maintenance of pluripotency of embryonic stem cells (Chen et al.

2008; Chia et al. 2010).Our findings implicate ZNF143 in long-range
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chromatin interactions for the first time. Further investigation is

required to elucidate the specific role of this protein in the estab-

lishment and maintenance of the chromatin structure.

Comparing the results from these six data sets can help guide

future experiments. While each data set revealed factor-specific

interactions, the majority of interactions were found inmore than

one data set (Supplemental Fig. S1D). The RAD21 data set revealed

more than twice as many interactions as any of the other data sets.

Moreover, all data sets revealed strong enrichment of CTCF and

cohesin proteins in their anchor regions.

HOT regions were enriched at interacting loci and tended to

interact with other HOT regions. This finding supports the tran-

scription factory model in which promoters of actively transcribed

genes occupy distinct nuclear subcompartments. The strong en-

richment for cohesin, CTCF, and ZNF143 at all interacting loci

including HOT regions implicates these factors as possible regula-

tors or facilitators of transcription factories.

We demonstrated that the chromatin state at distal regulatory

regions correlates significantly with gene expression. Sanyal et al.

(2012) had previously shown that genes whose promoters interact

with enhancers are more likely to be expressed than genes whose

promoters do not interact with enhancers. We extend those find-

ings to show a gradient of expression values as a function of distal

chromatin state in which TSS, T, and E are associated with high

gene expression, WE and CTCF are associated with moderate gene

expression, and R is associated with low gene expression. Further,

we found that enhancer–promoter interactions, but not other

types of interactions, tend to be cell-type-specific and are enriched

at genes with the annotation ‘‘transcription factor binding.’’

In addition to bringing together two functional elements,

long-range interactions appear to form large loops that coincide

with functionally coordinated domains of active and inactive

chromatin. While this characteristic is shared with TADs, these

loops tend to be substantially smaller and may represent subTAD

Figure 5. Proximal vs. distal network architecture in K562 cells. (A) For each TF, the percentage of targets found in the distal, proximal, or both networks
is depicted. (B) Hierarchical networks built from proximal, distal, and combined TF-only networks. Blue lines represent downward edges, red lines
represent upward edges, and gray lines represent lateral edges. The colors of the nodes represent the tier in which the node resides in the proximal
network. The size of the node represents the degree (total number of inward and outward edges) for each node in that network. (C ) Box andwhisker plots
depicting the degree (total inward and outward edges) of nodes in each tier of each hierarchical network.
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structures. Further work is required to determine whether these

looping events are a cause or result of chromatin boundaries;

however, a recent study by Nora et al. (2012) has demonstrated

that removal of boundary regions containing CTCF binding sites

can result in loss of a TAD boundary.

Finally, we compared network wiring and architecture

between proximal and distal regulatory networks and found sub-

stantial differences in TF-target relationships and network hierar-

chy that were consistent across cell lines. GO analysis revealed that

many cell-type-specific and dynamic processes were regulated

more by distal than proximal binding of TFs, while more routine

biological processes tended to be regulated via proximal binding of

TFs. We also show that certain TFs regulate distinct processes via

proximal or distal binding.

During the preparation of this work, a related study appeared

that mapped interactions at high resolution with Hi-C using very

deep sequencing (Jin et al. 2013). Their study was performed in

a different cell type, making direct comparisons difficult. One

important distinction between the studies is that ours was carried

out in one of the most well-characterized cell lines available.

Extensive integration with hundreds of existing ChIP-seq and

RNA-seq data sets allowed novel insights into the combination of

factors involved in interactions, the effect of distal chromatin state

on transcription, and the structure and function of distal regula-

tory networks. Such advances would not have been possible

without both a comprehensive map of interacting regulatory re-

gions and a compendious set of transcription factor and histone

marks binding profiles. Generated in one of the most well-studied

human cell lines, this study reveals not only many new insights

but also serves as a valuable resource for the scientific community.

Methods

Cell culture and ChIA-PET library preparation
All ChIA-PET experiments were conducted for this study and are
not previously published. K562 (ATCC# CCL-243) cells were
grown under standard culture conditions and harvested at log
phase. The cells were cross-linked by 1.5 mM EGS for 20 min fol-
lowed by adding 1% formaldehyde at room temperature for 10min

Figure 6. Proximal vs. distal regulation of GO terms. (A) Heatmap comparing enrichment of GO terms in proximal vs. distal targets of each TF. Each row
corresponds to a GO term. Each column corresponds to a transcription factor. Red indicates greater enrichment in distal targets. Blue represents greater
enrichment in proximal targets. (B) Three plots highlighting examples of GO terms that exhibit different profiles of enrichment. Each circle represents a TF.
The size of the circle represents the number of targets in that GO term that the TF factor regulates (both proximally and distally). The color of the circle
represents the relative enrichment (proximal vs. distal) using the same scale as shown in A.
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on a plate rotator and then neutralized with 0.2 M glycine. After
a two-step of cell lysis and nuclear lysis with RIPA buffer, chro-
matin was sheared by BioRuptor 300 to an average size of 500 bp.
Sheared chromatin was subjected to overnight Immunoprecipita-
tion by the addition of 50 mg of antibodies. The antibodies used
in this study were POLR2A monoclonal antibody 8WG16 (Covance,
MMS-126R), rabbit polyclonal H3K4me1 (Abcam, ab8895), rabbit
polyclonal H3K4me2 (Abcam, ab7766), rabbit polyclonal H3K4me3
(Abcam ab8580), rabbit polyclonal H3K27ac (Abcam, ab4729), and
rabbit polyclonal RAD21 (Abcam, ab992). Antibodieswere coated to
the beads using protein G magnetic beads for 2 h and then washed
three times to remove nonspecific binding.

Immunoprecipitated chromatin fragments were subjected to
ChIA-PET library construction following the protocol as previously
described (Fullwood et al. 2009). Briefly, the chromatin DNA
fragments bound to antibody beads were divided into two aliquots
for DNA linker ligation. Biotinylated linkers,

linker A :
GGCCGCGATATCTTATCCAAC

CGCTATAGAATAGGTTG
;

linker B :
GGCCGCGATATACATTCCAAC

CGCTATATGTAAGGTTG
;

were ligated in 16°C overnight. The two aliquots were combined
and subjected to proximity ligation in diluted ligation buffer in
16°C overnight. Crosslinking was reversed using proteinase K.
DNA was enzymatically cleaved with MmeI in 37°C for 1 h. DNA
fragments with attached linkers were purified using streptavidin
beads. Using the resulting fragments, we created sequencing li-
braries and sequenced them using an Illumina HiSeq 2000.

Interaction calling

Paired-end reads were processed to remove linker sequences and
aligned to the human genome (hg19) using Bowtie (Langmead
et al. 2009). Aligned reads were filtered to remove unaligned reads,
readsmapping tomultiple genomic loci, duplicate reads, and reads
that could arise from self circularization. Filtered reads, as well as
those resulting from self-circularization, were used to call peaks
using either MACS2 or SICER (Zhang et al. 2008; Zang et al. 2009).
PETs that did not connect two binding sites (61500 bp) were re-
moved. The remaining PETswere used to determine interactions. A
distancematched rewired (DMR) data set was created to determine
interaction Z-scores and allow for FDR estimation. Interactions
between any two binding sites were scored and filtered such that
nomore than 10% of called interactions corresponded to the DMR
data set. See Supplemental Information for more details.

Annotation of ‘‘regulatory elements’’

DHSs for K562 were intersected with ‘‘combined’’ chromatin state
calls via integration of both ChromHMM and Segway outputs as
determined by Hoffman et al. (2013). DHSs were annotated as the
chromatin state that they overlapped the most. DHSs that did not
overlap any chromatin state calls were ignored. The remaining
annotated DHSs were considered the complete list of regulatory
elements in K562 cells.

Comparison to Hi-C and 5C data sets

We intersected our interactions with TADs determined by Dixon
et al. (2012). Boundaries of domains were converted to hg19 using
the UCSC liftOver tool. BEDTools intersectBed function (Quinlan
and Hall 2010) was used to determine which interactions crossed

boundaries by > 20 kb, and these were considered ‘‘inter TAD’’
interactions. In order to determine overlap with TAD boundaries,
each boundary region (single base pair) was first padded by 20 kb
on either side.

In order to determine overlap with 5C interactions, we
intersected our results with those from Sanyal et al. (2012).We first
added 10 kb in both directions to each end of our ChIA-PET in-
teractions. We then filtered these interactions to include only
those tested by Sanyal et al. (2012). Of the remaining interactions,
we determined what percentage of these interactions was also
called an interaction by 5C. To determine expected overlap we
built random sets of 5C interaction from the sets of 5C interactions
tested that had the same distribution of interactions distances as
the observed data. One thousand sets of random interactions were
generated to assess significance.

Enrichment of TFs at interacting loci

To test for enrichment of TFs at interacting loci, we first intersected
CPBS with TF binding sites as determined by ChIP-seq acquired by
the ENCODE Project Consortium (2012). For each TF we asked
what percentage of interacting loci overlaps a ChIP-seq peak. To
determine expected overlap, we performed the same analysis on a
randomly selected set of CPBS. Significance of enrichment was
determined by Fisher’s exact test and corrected for multiple hy-
pothesis testing using the Bonferroni method. TFs were annotated
as highly enriched if the P-value was #0.01, the log2(observed/
expected)was greater than 0.35, and if the TFwas present in at least
35% of interacting regions. TFs were annotated as weakly enriched
if the P-value was #0.01 but did not meet the other criteria. If the
P-value of enrichment was > 0.01 the enrichment was categorized
as ‘‘none.’’

Self-organizing maps

Self-organizing maps (SOM) were constructed for each of the six
ChIA-PET data sets using the R package ‘‘kohonen’’ (Kohonen
2001). The package was modified slightly to allow each neuron to
be plotted as a hexagon rather than a circle. For each CPBS we
determined which TFs were and were not bound and constructed
a matrix of ones and zeros representing this information. We then
used the R package ‘‘kohonen’’ to generate 10 SOMs and selected
the one with the minimum mean distance metric.

SOMs were made individually for each of the six data sets.
Neurons enriched for interactions were determined by Fisher’s
exact test with Benjamini-Hochberg correction (P < 0.01) and fil-
tered to include only those with fold enrichment greater than two.
For generation of the heatmap in Figure 2, enriched neurons from
all six SOMs were combined.

HOT region analysis

To determine the number of observed HOT regions involved in
interactions, we intersected our interacting loci with HOT regions
determined by the ENCODE Project Consortium (2012). To de-
termine the number of expected HOT regions involved in in-
teractions, we generated a random set of interacting loci from our
CPBS and intersected these with HOT regions determined by the
ENCODE Project Consortium. The significance of the difference
between the two values was determined by Fisher’s exact test.

To determine the number of expected HOT–HOT regions, we
generated 10,000 random sets of interactions by randomly rewir-
ing interactions. The mean value was used as the null value of
expected interactions linking twoHOTregions. These randomdata
sets of interactions were also used to assess significance.

Genome-wide map of regulatory interactions

Genome Research 1915
www.genome.org

 Cold Spring Harbor Laboratory Press on July 31, 2015 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Effect of distal chromatin state on gene expression

Promoters were defined as the 2000-kb regions upstream of
GENCODE V7 genes. For each gene whose promoter was involved
in an interaction we determined the chromatin states of the distal
regulatory region by intersecting with our annotated DHSs. It was
possible for one gene to be associated with multiple distal chro-
matin states. RPKMs for each gene in K562 were downloaded from
the ENCODE website.

Cell-type-specific gene expression

Gene expression data for 12 cell lines were downloaded from the
ENCODE website (http://genome.ucsc.edu/ENCODE/downloads.
html). Genes were considered cell K562-specific if they were
detected with > 10 RPKM in K562 and# 10 RPKM in all other cell
lines. Genes were considered broadly expressed if they were
detected at > 10 RPKM in all 12 cell lines. Genes were annotated
based uponwhich types of regulatory elements were present at the
distal end of an interaction. Categories are not exclusive as gene
promoters can interact with multiple different types of regulatory
elements. Correlation between cell-type-specific gene expression
and interaction with each distal chromatin state was determined
using Fisher’s exact test (P < 0.05).

Gene ontology enrichment analysis of genes with TSS-E
interactions

Gene promoters were defined as the 2-kb region upstream of
GENCODE V7 genes. Genes whose promoters interacted with at
least one enhancer were included. All genes whose promoters were
bound by one of the six TFs were used as the background. GO
analyses were performed using the R package ‘‘topGO’’ available
from Bioconductor using the GOslim annotations. P-values were
corrected using the Benjamini-Hochberg method. GO terms
enriched in sets of genes whose promoters interacted with en-
hancers were filtered for P-values < 0.05 with a fold change > 1.2.

Clustering interactions by histone marks

Histone ChIP-seq files for 11 histonemarks were downloaded from
the ENCODE website (http://genome.ucsc.edu/ENCODE/down-
loads.html) in bam format. Intrachromosomal interactions from
all six ChIA-PET data sets were combined. Thirty equally sized
genomic bins were generated around each interaction; 10 bins in
between the two interacting sites and 10 on either side of the loop.
Reads were counted for each histone mark in each bin. Bins were
normalized across marks and across interactions as previously
described (Handoko et al. 2011). Interactions were clustered into
eight clusters using k-means clustering. GO enrichment was done
using the R package ‘‘topGO’’ and the GOslim annotations.
P-values were corrected using the Benjamini-Hochberg method.

Construction of regulatory networks

Proximal regulatory networks were constructed using TF biding
peaks for 102 factors in K562 cells downloaded from the ENCODE
website (http://genome.ucsc.edu/ENCODE/downloads.html). Edges
were constructed from TFs to genes whose promoters to which they
were bound. Promoters were determined by extending 5 kb in both
directions from the TSS as defined by GENCODE V7 annotations.

Distal regulatory networks were built by combining TF
binding peaks for 102 factors in K562 with our ChIA-PET in-
teractions. Edges were constructed when TFs bound to distal
regions that interacted with gene promoters. Interactions that

connected two gene promoters were not used in the construction
of distal regulatory networks. Combined regulatory networks were
built by taking the union of edges from the proximal and distal
regulatory networks. In addition to these three ‘‘total’’ networks,
we constructed three ‘‘TF-only’’ networks for whichwe removed all
nodes except for the 102 TFs for which we have TF binding data.

Construction of hierarchical networks

Hierarchical networks of TF binding have been utilized by Gerstein
et al. (2012) and others in order to understand the global structure
of regulation. We built hierarchical networks using the same ap-
proach. Using the TF-only networks, nodes were organized into
three tiers using a simulated annealing algorithm that maximized
downward-pointing edges. Each network was built five times. The
network with the most downward-pointing edges was used for
further analysis.

GO enrichment comparisons of proximal vs. distal regulatory
networks

GO enrichments for proximal and distal targets of each TF were
determined using R package ‘‘topGO’’ and the GOslim annotations.
P-values were corrected using the Benjamini-Hochberg method.

To compare proximal and distal GO enrichments we first fil-
tered TFs for only those with outward edges in both networks. We
calculated P-values of GO enrichments as described above. The
P-value ratio was calculated as the log2 ratio of proximal vs. distal
P-values.
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