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Here we present the Coon OMSSA Proteomic Analysis Software Suite (COMPASS): a free
and open-source software pipeline for high-throughput analysis of proteomics data, designed
around the Open Mass Spectrometry Search Algorithm. We detail a synergistic set of tools for
protein database generation, spectral reduction, peptide false discovery rate analysis, peptide
quantitation via isobaric labeling, protein parsimony and protein false discovery rate analysis,
and protein quantitation. We strive for maximum ease of use, utilizing graphical user
interfaces and working with data files in the original instrument vendor format. Results are
stored in plain text comma-separated value files, which are easy to view and manipulate with
a text editor or spreadsheet program. We illustrate the operation and efficacy of COMPASS
through the use of two LC-MS/MS data sets. The first is a data set of a highly annotated
mixture of standard proteins and manually validated contaminants that exhibits the identi-
fication workflow. The second is a data set of yeast peptides, labeled with isobaric stable
isotope tags and mixed in known ratios, to demonstrate the quantitative workflow. For these
two data sets, COMPASS performs equivalently or better than the current de facto standard,
the Trans-Proteomic Pipeline.
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1 Introduction

LC-MS/MS is the analytical tool of choice for assessing the
protein content of a biological sample [1]. Over the past 15
years, several database search algorithms have been deve-
loped for the pivotal task of matching experimental tandem
mass spectra to peptide sequences through the use of a

protein database, such as SEQUEST [2] and MASCOT [3].
More recently, open-source software such as X!Tandem
[4] and the Open Mass Spectrometry Search Algorithm
(OMSSA) [5] has been released for this purpose. These free
alternatives are competitive with their commercial counter-
parts [6] and have been steadily gaining popularity.
However, a variety of common tasks require software in
addition to database searching. These include protein data-
base generation, spectral reduction, peptide false discovery
rate (FDR) analysis, peptide quantitation, protein parsimony
and protein FDR analysis, and protein quantitation. As
many of these tasks are relatively recent additions to data
processing workflows, software supporting them is far less
mature. Nonetheless, they are essential for contemporary
proteomics. FDR analysis, for example, is critical for maxi-
mizing sensitivity while simultaneously controlling specifi-
city. Tools for performing these discrete tasks are
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sometimes freely available, but often from disparate sources
and are usually not explicitly designed to work together [7].
Additionally, they are often intended for older database
search algorithms (i.e. SEQUEST and MASCOT) rather
than the newer alternatives.

A software suite, comprising most of the tools necessary
for typical proteomic data analysis, resolves this problem.
Built on the pioneering algorithms PeptideProphet [8] and
ProteinProphet [9], the Trans-Proteomics Pipeline (TPP)
[10–12] is the de facto standard for such a software suite.
The TPP, designed around open extensible markup
language (XML) files [13, 14], admirably strives for maxi-
mum flexibility, with the ability to read input data files in a
variety of instrument vendor formats. The TPP is primarily
designed for peptide identification with the commercial
tools SEQUEST or MASCOT, although it has recently been
adapted [11] to support OMSSA and various other search
tools including SpectraST [15, 16], an open-source spectrum
library algorithm.

Here we describe a free and open-source software pack-
age for use with OMSSA [5], which provides excellent
results, speed, scalability, and flexibility. The software
currently accepts Thermo Scientific.raw format files as input
but is readily adaptable to data files in other formats. The
main output format is simple, plain text comma-separated
value (CSV) files, which are easy to view and manipulate
with a text editor or spreadsheet program. Unlike XML, CSV
files are very intuitive for non-programmers and require
only standard office software to work with efficiently. The
CSV files are originally an output of OMSSA and are
extended by simply appending columns with additional
data. At later stages of the workflow, peptide- and protein-
centric CSV files are created by the software to complement
OMSSA’s original spectrum-centric CSV output files. All of
the software in this suite is designed to work in Microsoft
Windows (with the exception of OMSSA, which is cross-
platform), and all programs have a graphical user interface
(GUI) for ease of use. The suite contrasts with most other
proteomics packages, such as Virtual Expert Mass Spectro-
metrist [17] and Proteios [18], in that it intended to be
operated autonomously on a single desktop computer as
opposed to a client–server model which can require
considerable administration.

Note we aim to provide neither the absolute state of
the art in proteomic data analysis nor the tools for every
possible analytical task. Rather, we intend to make
available easy-to-use software for automatically applying
the commonly accepted rules for the interpretation of
shotgun proteomics data, a chore which can be quite
daunting without viable software. We anticipate that
this free, open-source suite will constitute the backbone
of software infrastructure for labs looking to perform
high-throughput proteomics with OMSSA as the
primary database search algorithm. The software is
available at http://www.chem.wisc.edu/!coon/software.
php]compass.

2 Materials and methods

2.1 Software

2.1.1 Development

All software (with the exception of OMSSA [5], which was
developed by the National Center for Biotechnology Infor-
mation) was developed in C] with Microsoft Visual Studio
2005/2008/2010 and the Microsoft.NET Framework version
2.0/3.5 (freely available at http://www.microsoft.com/NET/).
Access to data in the proprietary.raw file format was enabled
by the XRawfile Component Object Model (COM) library
(XRawfile2.dll, installed automatically with Thermo Xcalibur).

2.1.2 Protein database generation

Database Maker creates protein databases for target–decoy
searching [19]. Each protein sequence in an input.fasta text
file is converted to a decoy version of the same length by
reversing, shuffling, or generating random amino acids (the
N-terminus can optionally be excluded to account for initiator
methionines). The resulting concatenated target–decoy .fasta
protein database is automatically converted to the basic local
alignment search tool format for use with OMSSA.

2.1.3 Spectral reduction

DTA Generator reduces LC-MS/MS data to merged .dta text
files for database searching with OMSSA. To facilitate different
search parameters, spectra are automatically split into separate
files for each combination of fragmentation method and MS/
MS mass analyzer. For each MS/MS spectrum, if the precur-
sor charge state was determined by the instrument firmware,
only a single spectrum at that charge state is generated. If the
charge is unknown (either due to ambiguous or low-resolution
MS1 data), a spectrum is generated for each precursor charge
state in a user-defined range. Removal of remaining precursor
is optional, as well as electron-transfer dissociation (ETD) pre-
processing to remove precursor, charge-reduced precursors,
and neutral losses from charge-reduced precursors [20].

2.1.4 Peptide identification

OMSSA [5] (http://pubchem.ncbi.nlm.nih.gov/omssa/,
version 2.1.7) was used for peptide identification by protein
database search. The CSV output option (-oc) was used.

2.1.5 Peptide FDR analysis

FDR Optimizer calculates spectrum score and precursor
mass error thresholds to maximize the number of target
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identifications at a given error rate. First, the best pep-
tide–spectrum match (PSM) for each spectrum, as deter-
mined by expectation value (e-value), is extracted. The
precursor mass error is determined by first finding
the isolation center m/z peak (i.e. scan filter m/z) in the
preceding MS1 spectrum. This isolation m/z is converted to
neutral mass and compared with the monoisotopic mass of
the identified peptide. The nearest multiple of 1.00335 Da
(carbon-13 mass minus carbon-12 mass, the main contri-
butor to peptide isotopic peaks) is subtracted, and this mass
error is converted to ppm.

High-confidence identifications are leveraged to determine
the systematic precursor mass error for post-acquisition
recalibration. First, a preliminary 1% spectrum FDR threshold
is established. The median precursor mass error of the PSMs
below the FDR threshold is taken to be the systematic error,
and this quantity is subtracted from every precursor mass
error to yield an adjusted precursor mass error. This correc-
tion more effectively allows the use of a symmetric precursor
mass error window, which greatly improves analysis speed.

To appropriately combine results from different searches,
q-values [21, 22] are then computed for each PSM, without
regard to precursor mass accuracy. The final FDR optimi-
zation considers q-values instead of e-values. Iteratively, each
precursor mass error threshold is applied, and the q-value
threshold is adjusted until the desired error rate is obtained.
The thresholds yielding the maximum number of target
identifications are used.

This program has many key options. First is the ability to
select between low- or high-resolution precursor analysis. If
an FT MS1 scan is available, the high-resolution option will
perform a two-dimensional analysis utilizing both the
q-value and precursor mass error of every PSM. The low-
resolution version performs a simple one-dimensional
analysis utilizing only q-value.

Another option is batch versus non-batch analysis.
For experiments spanning multiple LC-MS/MS runs, it is
often critical to establish an FDR for the entire data set,
requiring the batch version. Other times, such as when
analyses are being compared, it is desirable to have a
constant FDR threshold for each data set, and non-batch is
preferable. A final critical option is the ability to select
between FDR analysis at the PSM or unique peptide level.
If the maximum number of accepted spectra is desired,
the former is preferable, but for most proteomic studies,
the latter is more appropriate. Note that the software
defines a unique peptide as a distinct combination of
amino acid sequence and modifications, regardless of
precursor charge state.

2.1.6 Peptide quantitation

TagQuant extracts and processes isobaric labeling quantita-
tive information from MS/MS spectra. It is compatible with
collision- and electron-based dissociation [23] of tandem

mass tags (TMT) duplex [24] and 6-plex [25], and iTRAQ
4-plex [26] and 8-plex [27]. Intensities of the reporter ions of
interest are obtained from the raw data, and these values are
subsequently denormalized by multiplying by the ion
injection time to yield the number of ion counts detected, a
quantity which can be fairly compared across different
spectra and analyses. Purity correction is then applied, as
has been previously published [28], using user-specified
purity data provided by the manufacturer. Finally, normal-
ization is performed such that the total intensity of each tag
is equal, accounting for differences in sample mixing
quantities.

2.1.7 Protein parsimony and protein FDR analysis

Protein Herder infers the most likely proteins identified based
on the peptides validated by FDR Optimizer. All peptide
sequences are first re-searched against the protein database to
find all instances of those sequences in any protein, with
enzyme specificity if provided. The Boyer–Moore string
search algorithm [29] is used for optimal performance.
Several filtering steps are then executed to apply the rules of
parsimony to the identified protein list [30].

First, all sets of indistinguishable proteins, which are
identified by the same collection of peptides, are combined
into protein groups. Next, subset proteins, which are iden-
tified by fewer peptides than another protein and contain no
unique peptides, are eliminated. At this stage, protein
groups are sorted in ascending order by protein probability
value (p-value), calculated as the product of the best p-value
for each unique peptide [9]. Next, subsumable proteins,
which are identified by a combination of the peptides that
identify other proteins, are also eliminated. Finally, using
decoy protein groups divided by target protein groups as the
protein FDR, a protein p-value threshold is established to
give a controlled error rate.

2.1.8 Protein quantitation

ProteinTagQuant combines peptide quantitation to yield
protein quantitation. This is achieved by summing reporter
ion intensities from TagQuant. Various criteria are available
to filter out spectra that might provide dubious quantitation,
e.g. high levels of precursor interference [31], peptides
shared between multiple protein groups, or peptides
containing modification sites.

2.2 Experimental

2.2.1 Identification data set

The Institute for Systems Biology (ISB) standard protein
mix sample [32] (mix ‘‘B’’) was acquired following digestion

1066 C. D. Wenger et al. Proteomics 2011, 11, 1064–1074

& 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



with trypsin. Peptides were separated on a Waters
nanoACQUITY UPLC (Milford, MA, USA) with a self-
packed 9 cm pre-column (75 mm id) and a 25-cm analytical
column (50 mm id), both packed with Alltech Alltima 5mm
C18 particles (Deerfield, IL, USA) [33]. The peptides were
eluted with a gradient of 10–30% ACN over 2 h at a flow rate
of 300 nL/min. The eluent was analyzed with LC-MS/MS on
a Thermo Scientific LTQ Orbitrap Velos mass spectrometer
(San Jose, CA, USA/Bremen, Germany). The instrument
method was 165 min and consisted of a 60 000 resolving
power MS1 survey scan detected in the orbitrap followed by
data-dependent top-10 MS2 detected in the ion trap, utilizing
decision tree logic [34] to decide between resonant-excitation
CAD and ETD [35] as the activation type. Precursor charge
states that were unknown or 11 were excluded, and
dynamic exclusion was enabled after one fragmentation
event for 45 s.

This data set was searched against the ISB database of 18
standard proteins192 contaminant proteins11709 Haemophilus
influenzae Rd proteins as background (http://regis-web.
systemsbiology.net/PublicDatasets/database/18mix_db_
plus_contaminants_20081209.fasta) using OMSSA 2.1.7.
Full trypsin enzymatic specificity was required, allowing up
to three missed cleavages. Carbamidomethylation of
cysteines (157 Da) was specified as a fixed modification,
whereas oxidation of methionines (116 Da) was specified as
a variable modification. An average mass tolerance of 75 Da
was used for precursors, whereas a monoisotopic mass
tolerance of 70.5 Da was used for products.

For TPP analysis, the data were searched with SEQUEST
(version 27 from the University of Washington) or OMSSA
(version 2.1.9) using either a 75 Da average precursor mass
tolerance or a 710 ppm monoisotopic precursor mass
tolerance and a monoisotopic fragment bin size of 0.38 Da
(SEQUEST) or a monoisotopic product mass tolerance of
70.5 Da (OMSSA). Results were filtered with PeptidePro-
phet, iProphet, and ProteinProphet from TPP 4.3 rev 1. The
accurate mass, non-parametric model, and decoy estimation
options were used in PeptideProphet.

2.2.2 Quantitation data set

BY4741 wild-type yeast were grown in yeast extract peptone
dextrose media to mid-log phase (OD600 5 0.6). Proteins
were chemically extracted with YPer (Thermo Scientific
Pierce, Rockford, IL, USA), and digested with Promega
sequencing-grade modified trypsin (Madison, WI, USA)
at a 1:50 enzyme/substrate ratio at 371C overnight and
quenched by acidification with TFA. Peptides were
desalted and labeled with Thermo Scientific Pierce
TMTsixplex (lot number KD130680A), with intermittent
mixing at room temperature, and quenched following an
hour of incubation. Peptides labeled with tags of nominal
m/z 126 through 131 were mixed in ratios of 1:5:2:1.5:1:3,
respectively.

Peptides were separated on a Waters nanoACQUITY
UPLC with a self-packed 9 cm precolumn (75 mm id) and a
30-cm analytical column (50 mm id), both packed with
Alltech Alltima 5 mm C18 particles [33]. The peptides were
eluted with a gradient of 5–30% ACN over 2 h at a flow rate
of 300 nL/min. The eluent was analyzed with LC-MS/MS on
a Thermo Scientific LTQ Orbitrap Velos mass spectrometer.
The instrument method was 165 min and consisted of a
30 000 resolving power MS1 survey scan followed by data-
dependent top-10 higher energy collision dissociation
(HCD) MS2 at 7500 resolving power, all detected in the
orbitrap. Precursor charges states that were unknown or 11
were excluded, and dynamic exclusion was enabled after one
fragmentation event for 45 s.

This data set was searched against the Saccharomyces
Genome Database [36] (http://www.yeastgenome.org/;
January 5, 2010 release; ‘‘all’’ file including verified,
uncharacterized, and dubious open reading frames, and
pseudogenes). Full trypsin enzymatic specificity was
required, allowing up to three missed cleavages. Carbami-
domethylation of cysteines (157 Da) and TMT 6-plex
on peptide N-termini and lysines (1229 Da) were
specified as fixed modifications, while oxidation of methio-
nines (116 Da) and TMT 6-plex (1229 Da) on tyrosines
were specified as variable modifications. An average mass
tolerance of 75 Da was used for precursors, whereas a
monoisotopic mass tolerance of 70.01 Da was used for
products. For TPP analysis, the data were searched with
SEQUEST (version 27 from the University of Washington)
or OMSSA (2.1.9) using either a 75 Da average precursor
mass tolerance or a 710 ppm monoisotopic precursor mass
tolerance and a monoisotopic fragment bin size of 0.01 Da
(SEQUEST) or a monoisotopic product mass tolerance of
70.01 Da (OMSSA). Results were filtered with PeptidePro-
phet, iProphet, and ProteinProphet from TPP 4.3 rev 1. The
accurate mass, non-parametric model, and decoy estimation
options were used in PeptideProphet. The TPP component
Libra was used for isobaric label quantitation.

3 Results and discussion

3.1 Data analysis workflow

Figure 1 depicts the two basic workflows of Coon OMSSA
Proteomic Analysis Software Suite (COMPASS) – identifi-
cation and quantitation. Independently of the LC-MS/MS
data, a protein database is generated with Database Maker.
This step is only performed once per .fasta (e.g. when an
updated protein database is released). Although several
methods exist for performing target–decoy searches [19, 37],
simple protein sequence reversal was the first [38] and is
most straightforward. Other decoy methods are similarly
effective but require more effort for database generation
and/or post-search correction (i.e. with random databases,
the increased number of decoy peptides relative to target
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peptides must be compensated for). A search against a
concatenated database – the approach assumed by
COMPASS – as opposed to separate target and decoy data-
base searches, is also the simpler and arguably more effec-
tive approach [19].

DTA Generator processes instrument data from LC-MS/
MS analyses. This software reduces the raw data to
text formats usable by search algorithms. Although OMSSA
is our focus, individual .dta files for SEQUEST or .mgf
files for MASCOT are additional output options. Database
searching can be performed with OMSSA using either
the command-line interface or the NCBI OMSSA Browser,
with the only requirement that CSV output must be speci-
fied for use with the rest of the workflow. We have also
developed our own GUI for OMSSA, named the OMSSA
Navigator. This software translates between textual and
graphical search parameters and also validates user input, in
real time.

FDR analysis is then performed at the spectrum/peptide
level with FDR Optimizer. Two important considerations
come into play at this step: when to apply the FDR threshold
and whether it should be applied based on PSMs or unique
peptides. For typical experiments, FDR analysis should be
performed once for all data sets simultaneously (batch
option) at the unique peptide level. Performing FDR
analysis for each data set independently will likely over-
estimate the number of identifications at the reported error
rate, as target identifications are more likely to repeat in
different analyses, while decoy identifications are more
random. The same is true for PSMs, as target PSMs typically
reduce more drastically to unique peptides than decoy
PSMs.

At this point, the identification and quantitation work-
flows diverge. For isobaric label-based experiments, quanti-
tative data are extracted with TagQuant. The workflow
continues as normal with the next stage, simply using new
results files which have extra columns of quantitative data
appended.

Next, Protein Herder infers the minimum set of
proteins which can explain the list of confidently identified
peptides. Previously established principles of parsimony
[30] are applied to eliminate proteins whose peptides could
be better explained by the presence of other proteins.
Proteins that are indistinguishable, given the peptides that
identify them, are combined into protein groups. The final
parsimonious list of protein groups is then filtered to the
user-specified FDR.

Finally, for quantitative data sets, peptide quantitation
must be combined to yield protein quantitation. Protein-
TagQuant accomplishes this task by summing quantita-
tion from the peptides that make up a protein group,
effectively weighting peptide quantitation by reporter
tag signal abundance. Various filtering options are
available to improve quantitation by removing data
from peptides known to be problematic based on several
criteria.

Figure 1. Identification and quantitation workflow of COMPASS.
Database Maker generates BLAST-formatted protein databases
for OMSSA. DTA Generator converts raw instrument data to text
files for searching with OMSSA. FDR Optimizer performs FDR
analysis at the spectrum/peptide level, followed by protein
parsimony and FDR analysis at the protein level with Protein
Herder. For quantitation, the workflow is supplemented by
TagQuant, which performs spectrum/peptide-level quantitation,
and ProteinTagQuant, which performs protein-level quantita-
tion.
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3.2 Identification data set

With this data set, we aim to demonstrate and validate the
basic peptide and protein identification workflow of
COMPASS. To accomplish this, we use a relatively simple,
manually annotated sample – the ISB standard 18 protein
mix [32], for which all 18 standard proteins have been
identified and many contaminant proteins have been
manually validated – to prove its efficacy. The sample was
interrogated by nanoflow LC-MS/MS using a CAD/ETD
decision-tree method [34].

One of the most critical components of contemporary
shotgun proteomics is FDR analysis at the spectrum/
peptide level, typically achieved using a target–decoy search
strategy. Because an incorrect PSM is equally likely to match
to a target or decoy sequence, the distribution of scores for
decoy hits can be used as a surrogate for incorrect target hits
by which one can estimate the number of false positives and
thus, FDR. The advent of linear ion trap–Fourier transform
hybrid mass spectrometers [39, 40] enhanced peptide iden-
tification by enabling the detection and selection of precur-
sors for activation from high-mass accuracy MS1 spectra.
This process yields ppm-level precursor mass errors, which
provide a highly orthogonal dimension for FDR filtering
[41].

The MacCoss lab has shown that wide precursor mass
tolerance searches followed by filtering is preferable to
narrow searches [42], and COMPASS uses this approach.
For maximum sensitivity, DTA Generator outputs the isola-
tion center m/z as the precursor and OMSSA searches
should be performed with a wide precursor mass tolerance
(i.e. up to 75 Da) to ensure that the correct peptide will be
considered even if an isotopic peak has been selected. This
strategy avoids determination of the precursor monoisotopic
m/z, which is an error-prone process that, when coupled
with narrow precursor mass tolerance searches, can lead to
the loss of identifications. The COMPASS workflow is
explicitly designed to avoid these pitfalls.

The post-search filtering process, performed by FDR
Optimizer, is demonstrated in Fig. 2. Precursor mass error –
the x-axis – is a metric for how well the MS1 information
matches the candidate peptide, whereas log10(e-value) – the
y-axis – measures how well the MS2 data matches the
candidate peptide. With low-resolution MS1 data, only
the y-axis is used due to poor measurement precision of
the x-axis, leading to the acceptance of many matches that
unknowingly have high precursor mass error, and thus are
unlikely to be correct (Fig. 2A). Performing FDR analysis
using only q-values yields 864 unique target peptides at 1%
FDR. However, when precursor mass error is used as a
filter, the number of peptides taken from the dense region
around 0 ppm precursor mass error is increased (Fig. 2B).
Peptides with worse-matching MS/MS spectra, but low
precursor mass errors, can be accepted, leading to an 11.5%
increase in the number of identifications, to 963 unique
target peptides.

Carrying out FDR analysis using q-values, not e-values, is
a critical distinction for combining diverse search results. In
this case, although it is a single LC-MS/MS analysis, two
different fragmentation methods – CAD and ETD – are
utilized. Because OMSSA e-values can have slightly differ-
ent meanings for different data types or search parameters,
the software calculates the q-value for each PSM. Q-values
are a more empirical measure of confidence in a given
identification and therefore are better suited for combining
results. In both Fig. 2A and B, a single q-value threshold
represents an e-value threshold for CAD results that is
slightly lower than that for ETD results.

Figure 2. Comparison of one- (A) versus two-dimensional
(B) FDR analysis at the peptide level. Without high-mass accu-
racy precursor detection, e-value is the sole discriminant
between correct and incorrect PSMs. As a result, many PSMs
with high precursor mass error, and therefore, less likelihood of
being correct, are accepted. The addition of precursor mass
accuracy as a secondary discriminant allows the acceptance of
spectra with worse e-values, giving a higher number of PSMs
and unique peptides at the same FDR. In both cases, the q-value
threshold corresponds to slightly better (i.e. lower) e-values for
ETD (upper dashed line) than CAD (lower dashed line).
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The well-annotated nature of the sample analyzed in this
data set enables validation of the FDR analysis employed by
COMPASS. The database provides two different levels of
decoy databases; therefore, after the normal FDR rules are
applied, additional ‘‘background’’ proteins from an unre-
lated organism (H. influenzae, in this case) remain to verify
the estimated error rate. In this case, out of the 3177
accepted PSMs, only 17 (0.54%) were from H. influenzae
proteins. At the unique peptide level, 17 out of 963 were
from H. influenzae, for an actual error rate of 1.8%, close to
the expected 1%.

Protein-level analysis is shown in Table 1. In total, 34
proteins were identified at a 1% FDR. All 18 of the standard
proteins were identified with very high confidence, ranging
from 17 to 399 PSMs and from 4 to 92 unique peptides.
Furthermore, though they tend to overestimate confidence,
protein p-values were at worst 10"66, and many were effec-

tively zero due to numeric underflow (i.e. many small
numbers multiplied until the computer assumes zero). The
minimum protein sequence coverage was about 20%,
ranging all the way up to 95%. Additionally, 15 contaminant
proteins that have previously been manually validated were
identified.

As one out of the 34 proteins identified at a 1% FDR was
actually a background H. influenzae protein, the true error
rate for this data set was 2.9%. However, this value reflects
the low number of proteins present in the sample, and in
fact, one background protein is expected to be accepted at a
1% protein FDR statistically (negative binomial distribution;
r 5 1, p 5 0.5). For realistic proteomic data sets with
hundreds or even thousands of identified proteins, this issue
is much less significant.

For comparison, this data set was searched with the TPP
using a 75.0 Da average precursor mass tolerance, typical

Table 1. Parsimonious proteins detected at a 1% FDR from the identification data set

Protein Organism PSMs Peptides Sequence
coverage (%)

p-Value

Serotransferrin precursor Cow 399 92 85 0
Glycogen phosphorylase, muscle form Rabbit 249 76 65 0
Serum albumin precursor Cow 303 73 84 0
Alkaline phosphatase precursor Escherichia coli 358 61 95 0
b-Galactosidase Escherichia coli 222 60 56 0
Catalase Cow 212 38 65 0
Glyceraldehyde 3-phosphate dehydrogenase Rabbit 216 33 62 0
a-Amylase Bacillus licheniformis 168 31 50 0
Cytochrome c Cow 122 30 83 0
Carbonic anhydrase II Cow 147 23 63 0
Mannose-6-phosphate isomerase Escherichia coli 94 19 55 0
Trypsin Pig 31 5 25 0
Actin, aortic smooth muscle Cow 121 25 58 8#10"301

b-Lactoglobulin precursor Cow 76 21 63 2#10"289

Myoglobin Horse 36 15 67 2#10"210

Troponin I, fast skeletal muscle Rabbit 41 15 66 1#10"188

Myosin light chain 1, skeletal muscle isoform Rabbit 31 15 63 2#10"156

Troponin C, skeletal muscle Rabbit 29 11 61 1#10"148

Ovalbumin Chicken 64 12 28 9#10"130

a-S2-casein precursor Cow 24 11 37 6#10"123

Glucoamylase precursor Aspergillus awamori 24 7 17 3#10"102

a-Lactalbumin precursor Cow 17 6 46 5#10"83

Ubiquitin Cow 13 9 95 5#10"80

a-S1-casein precursor Cow 9 8 30 1#10"79

b Casein precursor Cow 18 4 20 1#10"66

Transthyretin precursor Cow 11 7 61 1#10"62

Myosin regulatory light chain 2, skeletal
muscle isoform type 2

Rabbit 14 5 25 2#10"61

UPF0076 protein yjgF Escherichia coli 13 4 54 1#10"42

Hemoglobin subunit a-1/2 Rabbit 7 4 40 1#10"38

Fructose-bisphosphate aldolase A Rabbit 3 3 16 3#10"29

Hemoglobin subunit b-1/2 Rabbit 4 3 21 3#10"26

k-Casein precursor Cow 4 2 15 6#10"25

Aldehyde dehydrogenase, mitochondrial Hamster 2 2 4 1#10"12

Queosine biosynthesis protein Haemophilus influenzae Rd 1 1 4 2#10"6

White rows correspond to the standard proteins (18), light gray rows correspond to known contaminants (15), and dark gray rows
correspond to background proteins from Haemophilus influenzae Rd (1).
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for COMPASS, and a 710 ppm monoisotopic precursor
mass tolerance, typical of most proteomic searches. The TPP
searches were done using both SEQUEST and OMSSA.
PSMs, peptide, and protein identifications at a 1% FDR are
given in Table 2. COMPASS performs favorably in all
metrics, in particular unique peptides for which it yielded
the most across all analyses.

3.3 Quantitation data set

With this data set we aim to demonstrate and validate the
quantitative workflow of COMPASS. We achieve this by
using yeast proteins, digested with trypsin, labeled with
isobaric stable isotope tags, and mixed in known ratios. We
used TMT 6-plex tags to label peptides mixed in ratios of
1:1:1.5:2:3:5. The peptides were analyzed by LC-MS/MS
utilizing a data-dependent top-10 HCD method, with all
spectra acquired in the orbitrap. Analysis by COMPASS
yielded 9931 target PSMs and 5832 unique target peptides at
a 1% peptide FDR, translating to 917 target proteins at a 1%
protein FDR.

Accuracy and precision of quantitation can be evaluated
by plotting the intensity of reporter tags on opposite axes, as
shown for all 9931 accepted PSMs in Fig. 3. The slope (m)
of each series represents the accuracy, whereas the coeffi-
cient of determination (R2) represents the precision. For
PSMs, depicted in Fig. 3A, the slopes for mixing ratios
of 1, 1.5, 2, 3, and 5 had errors of –3.7, –1.4, 12.4, 12.3,
and –0.3%, respectively. We note that this level of
accuracy was achieved even without any tag intensity
normalization, meaning that any imprecision in mixing
amounts is reflected in these errors. The coefficients of
determination were 0.977, 0.983, 0.982, 0.981, and 0.985,
indicating excellent precision.

Precision and accuracy of the quantitative analysis
improves even further at the protein level, as shown for all
917 identified proteins in Fig. 3B. By summing peptide

quantitation data, results are weighted according to their
abundance, which tends to correlate well with its reliability.
The slopes for mixing ratios of 1, 1.5, 2, 3, and 5 had errors
of –2.5, 10.6, 11.9, 17.3, and –2.2%, respectively. The
precision was significantly higher at the protein level, with
coefficients of determination of 0.999 for all series.

This data set was also searched by the TPP using the
same two precursor mass search types and search algo-
rithms for comparison. Again, COMPASS performed
favorably, in this case identifying the most PSMs and
unique peptides across all analyses, and only slightly fewer
proteins. TPP’s Libra and COMPASS’s TagQuant/Protein-
TagQuant produced quantitation of similar quality.

3.4 Large-scale data sets

COMPASS has been used in multiple large-scale proteomic
studies. In one study, 3908 yeast proteins were identified at
a 1% FDR, utilizing digestion with five different enzymes,
fractionation by strong cation exchange (SCX) chromato-
graphy, and triplicate LC-MS/MS analysis [43]. In another
study, human embryonic stem cells have been quantitatively
compared with induced pluripotent stem cells and their
somatic precursors, yielding 7962 proteins at a 1% FDR,
6179 of which were quantified by iTRAQ 4-plex (D. H.
Phanstiel et al., manuscript in preparation). Finally, in an
investigation of environmental stress response, 2973 yeast
proteins were identified at a 1% FDR, of which 1373 were
quantified in biological triplicate with TMT 6-plex
over a 240-min time course following treatment with 0.7 M
NaCl (M. V. Lee et al., submitted for publication).

3.5 Software availability

All of the software described here – both as a Microsoft
Windows installer and full source code – is available at

Table 2. Comparison of PSMs, peptide, and protein identifications at a 1% FDR produced by COMPASS and the TPP for the identification
and quantitation data sets

Data set Software suite Search algorithm Precursor mass tolerance PSMs Peptides Proteins
(non-background)

Identification COMPASS OMSSA 75 Da (average) 3177 963 34 (33)
Identification TPP SEQUEST 75 Da (average) 2786 733 35 (33)
Identification TPP SEQUEST 710 ppm (monoisotopic) 2943 772 35 (34)
Identification TPP OMSSA 75 Da (average) 3437 879 34 (34)
Identification TPP OMSSA 710 ppm (monoisotopic) 1284 560 33 (31)

Quantitation COMPASS OMSSA 75 Da (average) 9931 5832 917
Quantitation TPP SEQUEST 75 Da (average) 9693 5394 920
Quantitation TPP SEQUEST 710 ppm (monoisotopic) 9256 5163 869
Quantitation TPP OMSSA 75 Da (average) 9321 5223 929
Quantitation TPP OMSSA 710ppm (monoisotopic) 6199 3905 757

The best results for each quantity are in bold for both data sets.
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http://www.chem.wisc.edu/!coon/software.php]compass.
It is licensed under the GNU General Public License
version 3.

3.6 Supporting Information

Step-by-step instructions for processing the identification
and quantitation data sets with COMPASS, as well as links

to download the raw data and results, are provided in the
Supporting Information.

4 Concluding remarks

The development of software for the analysis of mass
spectral data from biological samples can present significant
challenges. Complete analysis requires attention to many
important components, many of which are not widely
available. Our aim is to distribute an open-source compa-
nion platform for OMSSA, COMPASS, to facilitate typical
proteomic analysis functions so that the scientific commu-
nity can freely employ an easy-to-use, modern, competitive
pipeline.
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Coon group for their use of and feedback on this software suite,
which has greatly enhanced its development. We thank A. J.
Bureta for figure illustrations and Alicia Williams for critical
proofreading. We are grateful to Carly Holstein, Jimmy Eng,
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protein mix sample and performing the TPP analyses, supported
by the University of Washington’s Proteomics Resource
(UWPR95794). D. H. P. acknowledges support from an NIH
predoctoral traineeship – the Genomic Sciences Training
Program, NIH 5T32HG002760. This work was supported by
the National Institutes of Health (NIH) R01 GM080148 and
P01 GM081629 to J. J. C.
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